Discrete Space
   HOME

TheInfoList



OR:

In
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
, a discrete space is a particularly simple example of a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gotthard album), 1999 * ''Open'' (Cowboy Junkies album), 2001 * ''Open'' (YF ...
in the discrete topology so that in particular, every singleton subset is an
open set In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are suf ...
in the discrete topology.


Definitions

Given a set X: A metric space (E,d) is said to be '' uniformly discrete'' if there exists a ' r > 0 such that, for any x,y \in E, one has either x = y or d(x,y) > r. The topology underlying a metric space can be discrete, without the metric being uniformly discrete: for example the usual metric on the set \left\.


Properties

The underlying uniformity on a discrete metric space is the discrete uniformity, and the underlying topology on a discrete uniform space is the discrete topology. Thus, the different notions of discrete space are compatible with one another. On the other hand, the underlying topology of a non-discrete uniform or metric space can be discrete; an example is the metric space X = \ (with metric inherited from the
real line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
and given by d(x,y) = \left, x - y\). This is not the discrete metric; also, this space is not
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
and hence not discrete as a uniform space. Nevertheless, it is discrete as a topological space. We say that X is ''topologically discrete'' but not ''uniformly discrete'' or ''metrically discrete''. Additionally: * The
topological dimension In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way. Informal discussion For ordinary Euclidean ...
of a discrete space is equal to 0. * A topological space is discrete if and only if its
singleton Singleton may refer to: Sciences, technology Mathematics * Singleton (mathematics), a set with exactly one element * Singleton field, used in conformal field theory Computing * Singleton pattern, a design pattern that allows only one instance ...
s are open, which is the case if and only if it doesn't contain any accumulation points. * The singletons form a
basis Basis may refer to: Finance and accounting * Adjusted basis, the net cost of an asset after adjusting for various tax-related items *Basis point, 0.01%, often used in the context of interest rates * Basis trading, a trading strategy consisting ...
for the discrete topology. * A uniform space X is discrete if and only if the diagonal \ is an
entourage An entourage () is an informal group or band of people who are closely associated with a (usually) famous, notorious, or otherwise notable individual. The word can also refer to: Arts and entertainment * L'entourage, French hip hop / rap collecti ...
. * Every discrete topological space satisfies each of the separation axioms; in particular, every discrete space is Hausdorff, that is, separated. * A discrete space is
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bicondi ...
it is
finite Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marke ...
. * Every discrete uniform or metric space is
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
. * Combining the above two facts, every discrete uniform or metric space is
totally bounded In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size†...
if and only if it is finite. * Every discrete metric space is bounded. * Every discrete space is
first-countable In topology, a branch of mathematics, a first-countable space is a topological space satisfying the "first axiom of countability". Specifically, a space X is said to be first-countable if each point has a countable neighbourhood basis (local base) ...
; it is moreover second-countable if and only if it is
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
. * Every discrete space is
totally disconnected In topology and related branches of mathematics, a totally disconnected space is a topological space that has only singletons as connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) ...
. * Every non-empty discrete space is second category. * Any two discrete spaces with the same
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
are homeomorphic. * Every discrete space is metrizable (by the discrete metric). * A finite space is metrizable only if it is discrete. * If X is a topological space and Y is a set carrying the discrete topology, then X is evenly covered by X \times Y (the projection map is the desired covering) * The
subspace topology In topology and related areas of mathematics, a subspace of a topological space ''X'' is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''X'' called the subspace topology (or the relative topology, or the induced to ...
on the
integers An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
as a subspace of the
real line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
is the discrete topology. * A discrete space is separable if and only if it is countable. * Any topological subspace of \mathbb (with its usual
Euclidean topology In mathematics, and especially general topology, the Euclidean topology is the natural topology induced on n-dimensional Euclidean space \R^n by the Euclidean distance, Euclidean metric. Definition The Euclidean norm on \R^n is the non-negative f ...
) that is discrete is necessarily
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
. Any function from a discrete topological space to another topological space is
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
, and any function from a discrete uniform space to another uniform space is
uniformly continuous In mathematics, a real function f of real numbers is said to be uniformly continuous if there is a positive real number \delta such that function values over any function domain interval of the size \delta are as close to each other as we want. In ...
. That is, the discrete space X is free on the set X in the
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
of topological spaces and continuous maps or in the category of uniform spaces and uniformly continuous maps. These facts are examples of a much broader phenomenon, in which discrete structures are usually free on sets. With metric spaces, things are more complicated, because there are several categories of metric spaces, depending on what is chosen for the morphisms. Certainly the discrete metric space is free when the morphisms are all uniformly continuous maps or all continuous maps, but this says nothing interesting about the metric
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
, only the uniform or topological structure. Categories more relevant to the metric structure can be found by limiting the morphisms to
Lipschitz continuous In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there e ...
maps or to
short map In the mathematical theory of metric spaces, a metric map is a function between metric spaces that does not increase any distance (such functions are always continuous). These maps are the morphisms in the category of metric spaces, Met (Isbell 1 ...
s; however, these categories don't have free objects (on more than one element). However, the discrete metric space is free in the category of bounded metric spaces and Lipschitz continuous maps, and it is free in the category of metric spaces bounded by 1 and short maps. That is, any function from a discrete metric space to another bounded metric space is Lipschitz continuous, and any function from a discrete metric space to another metric space bounded by 1 is short. Going the other direction, a function f from a topological space Y to a discrete space X is continuous if and only if it is ''
locally constant In mathematics, a locally constant function is a function from a topological space into a set with the property that around every point of its domain, there exists some neighborhood of that point on which it restricts to a constant function. ...
'' in the sense that every point in Y has a
neighborhood A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; see spelling differences) is a geographically localised community within a larger city, town, suburb or rural area, ...
on which f is constant. Every
ultrafilter In the mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a maximal filter on P; that is, a proper filter on P that cannot be enlarged to a bigger proper filter o ...
\mathcal on a non-empty set X can be associated with a topology \tau = \mathcal \cup \left\ on X with the property that non-empty proper subset S of X is an open subset or else a closed subset, but never both. Said differently, subset is open or closed but (in contrast to the discrete topology) the subsets that are open and closed (i.e.
clopen In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed. That this is possible may seem counter-intuitive, as the common meanings of and are antonyms, but their mathematical de ...
) are \varnothing and X. In comparison, subset of X is open
and or AND may refer to: Logic, grammar, and computing * Conjunction (grammar), connecting two words, phrases, or clauses * Logical conjunction in mathematical logic, notated as "∧", "⋅", "&", or simple juxtaposition * Bitwise AND, a boolea ...
closed in the discrete topology.


Examples and uses

A discrete structure is often used as the "default structure" on a set that doesn't carry any other natural topology, uniformity, or metric; discrete structures can often be used as "extreme" examples to test particular suppositions. For example, any
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
can be considered as a
topological group In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two st ...
by giving it the discrete topology, implying that theorems about topological groups apply to all groups. Indeed, analysts may refer to the ordinary, non-topological groups studied by algebraists as "
discrete group In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and o ...
s" . In some cases, this can be usefully applied, for example in combination with
Pontryagin duality In mathematics, Pontryagin duality is a duality (mathematics), duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group (the multiplicative group of complex numb ...
. A 0-dimensional
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
(or differentiable or analytic manifold) is nothing but a discrete and countable topological space (an uncountable discrete space is not second-countable). We can therefore view any discrete countable group as a 0-dimensional
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
. A
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
of
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
copies of the discrete space of
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal n ...
s is homeomorphic to the space of
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
s, with the homeomorphism given by the
continued fraction In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer ...
expansion. A product of countably infinite copies of the discrete space \ is homeomorphic to the
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. Thr ...
; and in fact uniformly homeomorphic to the Cantor set if we use the product uniformity on the product. Such a homeomorphism is given by using ternary notation of numbers. (See
Cantor space In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "the ...
.) Every
fiber Fiber or fibre (from la, fibra, links=no) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorpora ...
of a
locally injective function In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is g ...
is necessarily a discrete subspace of its
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined **Domain of definition of a partial function **Natural domain of a partial function **Domain of holomorphy of a function * Do ...
. In the
foundations of mathematics Foundations of mathematics is the study of the philosophy, philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the natu ...
, the study of compactness properties of products of \ is central to the topological approach to the
ultrafilter lemma In the mathematical field of set theory, an ultrafilter is a ''maximal proper filter'': it is a filter U on a given non-empty set X which is a certain type of non-empty family of subsets of X, that is not equal to the power set \wp(X) of X (suc ...
(equivalently, the
Boolean prime ideal theorem In mathematics, the Boolean prime ideal theorem states that ideals in a Boolean algebra can be extended to prime ideals. A variation of this statement for filters on sets is known as the ultrafilter lemma. Other theorems are obtained by consi ...
), which is a weak form of the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
.


Indiscrete spaces

In some ways, the opposite of the discrete topology is the
trivial topology In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete. Intuitively, this has the consequ ...
(also called the ''indiscrete topology''), which has the fewest possible open sets (just the
empty set In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
and the space itself). Where the discrete topology is initial or free, the indiscrete topology is final or cofree: every function ''from'' a topological space ''to'' an indiscrete space is continuous, etc.


See also

* Cylinder set *
List of topologies The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, ...
*
Taxicab geometry A taxicab geometry or a Manhattan geometry is a geometry whose usual distance function or metric of Euclidean geometry is replaced by a new metric in which the distance between two points is the sum of the absolute differences of their Cartesian c ...


References

* * Topology General topology Topological spaces